
AIAA-95-3463

Unsteady Simulation of the Viscous Flow
About a V-22 Rotor and Wing in Hover

R. Meakin

Overset Methods, Inc.
Moffett Field, CA

AIAA Atmospheric Flight Mechanics
Conference

August 7-10, 1995 / Baltimore, MD

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics

370 L'Enfant Promenade, S.W., Washington, D.C. 20024



AIAA-95-3463-CP

Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover

Robert L. Meakint
Overset Methods, Inc.

at NASA Ames Research Center M/S 258-1
Moffett Field, CA 94035

_Abstract

Results of an unsteady thin-layer Navier-Stokes simu-
lation of a 0.658-scale V-22 rotor and wing configura-

tion in hover are presented. All geometric components

of the flapped-wing and rotor test rig, including rotor

blades, are accurately modeled. Rotor motion and rotor/
airframe interference effects are simulated directly

using moving body overset grid methods. Tiltrotor

hover aerodynamics are visualized via unsteady particle

trace images. Wing download predictive ability is dem-
onstrated. Simulation results are compared with experi-

mental data.

INTRODUCTION

One of the most important factors in the overall utility

of a tiltrotor aircraft is its aerodynamic performance in

hover. Payload capacity is determined by performance

in hover and is directly related to the potential cost
effectiveness of the aircraft for either civil or military

applications. Noise is a key issue for the environmental

acceptability of future civil tiltrotor aircraft. It is in
hover conditions, such as take-off and landing maneu-

vers, where noise is an issue. An understanding of hover

aerodynamics is very important to the design of efficient
and environmentally acceptable tiltrotor aircraft.

The flowfield about a tiltrotor aircraft in hover is very

complex. Blade-tip vortices are relatively high fre-

quency flow structures which convect down and

impinge on the wings. The tilt-rotor wakes interact with
the wings to form a lower frequency recirculating flow

condition over the fuselage/wing junction known as the
tiltrotor "fountain." The rotor downwash over the

wings results in massive regions of separated flow on

and below the wing. Blade interaction with tip-vortices

and the fountain are primary sources of noise.

An unsteady Navier-Stokes simulation of a 0.658-

scale V-22 rotor and flapped-wing configuration has

been carried out to study the aerodynamics of a tiltrotor

in hover. Of particular interest is the mechanism of for-

mation and dynamics of the tiltrotor fountain. The simu-
lation conditions were derived from the experiments of

Felker, et al. t carried out in the NASA Ames 40 x 80
foot wind tunnel. The simulation includes accurate mod-

eling of all geometric components of the flapped-wing

and rotor test rig, including rotor blades. Accordingly,
rotor motion and rotor/airframe interference effects are

directly simulated. The simulation also represents a test

case of a general purpose flow solver that has recently
been unified with an efficient algorithm for establishing

domain connectivity among systems of overset grids.

Results of the simulation are presented in the follow-

ing pages. The paper is organized into three main sec-
tions. First, the specific test configuration studied is

defined in terms of geometry and flow parameters. Dif-

ferences/ambiguities between the experiment and simu-

lation configurations are noted. Second, the numerical
methods employed for the simulation are described

briefly and appropriate references to the literature are

given. Evidence of the formal accuracy of the numerical
methods is also provided. Finally, a thorough analysis of

the simulation results is given. Comparison with experi-
mental results is made whenever possible. Simulation

results are presented graphically to illustrate the qualita-
tive characteristics of all key flow structures.

TEST CONFIGURATION DEFINITION

The basic test configuration used for Feiker's experi-

ment and the present simulation is indicated in Figure 1.

Inspection of this figure reveals several presumably
minor differences between the two representations of

the test configuration. The experimental article was set

up in the 40 × 80 foot wind tunnel in a configuration
intended to represent free-air conditions to the degree

possible in an indoor facility. The test section overhead
doors were left open during the tests and the rotor wake

was directed into a large settling chamber and outside

through an exhaust path. The CFD simulation corre-

sponds exactly to free air conditions. No effort was
made to account for the tunnel walls, overhead doors,

etc. in the computation.

t Staff Scientist, Member AIAA
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for the actual V-22 rotor. The rotor blade definition used

in the present simulation corresponds to the actual V-22

rotor. The wing sweep and dihedral angles, and rotor

cant angle used in the present computational model cor-

respond to the experimental values indicated in Figure

3.

Table 1: Basic Dimensions

R rotor radius 12.5 ft

R n nacelle radius 1.67 ft

Reference 1 contains experimental results for a vari-

ety of flow conditions, exploring the effects of flap

angle, nacelle angle, rotor thrust, blade-tip speed, and

sense of rotation on tiltrotor wing downloads. The

present computational study corresponds to the Run 6

Point 9 case described in Reference 1. The case parame-

ters are summarized below in Table 2.

Table 2: Simulation Case Definition

0_b

o_f

ff'n

Sr

Vtip

blade collective pitch angle 12 °

flap angle 67 °

nacelle angle 85 °

sense of rotor rotation rught

(w/r pilot fwd, right wing) handed

blade-tip speed 803.7 ft/s

The blade collective pitch angle _b was not specified

in Reference I. Rather, the case was defined by the rotor

thrust (C r) and power (C O) coefficients. Rotor thrust

and shaft torque (i.e. power) are functions of blade pitch

angle. Accordingly, the blade pitch angle used in the

simulation was set to produce the experimentally mea-

sured thrust and power (see Table 3).

Table 3: Thrust and Power Coefficients

C T CQ

Experiment I 0.01476 0.001568

Present Simulation 0.01419 0.001565

The present computational study was carried out

using dimensionless variables. All results presented in

subsequent sections of the paper will be in dimension-

less form. Accordingly, for completeness, it is necessary

to define the characteristic variables used in the non-

dimensionalization process. The characteristic variables

and other key variables are defined in Table 4.

Table 4: Characteristic Variables, Units, and

Definitions

L

V

P

ta

CDI

Cp

CQ

CT

A

D1

Pinf

Q

T

rotor radius, R 12.5 ft

sonic speed 1121 ft/s

air mass density 0.002355 lb-ft/s

air dynamic viscosity 3.719x10 -7 lb-s/fl 2

wing download coef. DI / pA(_R) 2

pressure coef. (P - Pinf)/(T/A)

rotor power coef. Q_2 / pA(_R) 3

rotor thrust coef. T / pA(t)R) 2

rotor disc area rtR 2

wing down load lb

free-stream pressure lb/ft 2

rotor shaft torque ft-lb

(power = Q_2)

rotor thrust lb

rotor angular velocity Vtip/R

NUMERICAL METHODS

The present test case poses a number of problems

from a computational point of view. in addition to aero-

dynamic complexities, the test configuration is compli-

cated by formidable geometric obstacles as well. The

geometry is complex and involves relative motion

between component parts (i.e., blade motion w/r rotor

test rig and flapped-wing). The Chimera overset grid

method 2 of domain decomposition has been used to dis-

cretize the configuration geometry and form the basis of

the computational eflort.

An overset grid approach offers many advantages for

this type of problem. The geometric complexity of the

configuration can be reduced to a number of geometri-

cally simple component parts and discretized via corre-

sponding overlapping structured grid systems.

Accordingly, grid generation is greatly simplilied rela-

tive to other approaches. Grid components can move

independently with six degrees of freedom relative to an

inertial frame of reference. As a result, blade/vortex and

rotor/wing interaction can be directly simulated without
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than near the blades, was assumed to be laminar.

Clearly, this is not a correct assumption. However, it is

one necessitated by expedience because of the lack of an

appropriate model of turbulence for the rotor wake,

wake impingement on the wing, and massively sepa-

rated flow under the wing.

Table 5 summarizes flow parameter settings used in
the flow solver for the present tiltrotor simulation. The

Reynolds number given in Table 5 is based on vti p to

conform with the convention common to the rotorcraft

literature. However, the flow solver divides this value by

Mti p to maintain its internal non-dimensionalization,
which uses the sonic speed, rather than the blade-tip

speed, as the characteristic velocity. Noting the values of

At and trev given in Table 5, it is apparent that more than
3,500 time-steps were used for each revolution of the

rotor. This translates to approximately 0.1 ° of blade

rotation per time-step.

Table 5: Simulation Parameters

blade-tip Mach number 0.717

free-stream Mach number 0

Reynolds number 63.6x 106

(based on Vtip)

dimensionless time-step 0.0025

dimensionless time for 1 8.76
revolution of the rotor

Mtip

Minf

Re

At

trey

Solver Accuracy

The formal accuracy of the flow solver is second

order in space and, optionally, first, or second order in

time. Since the Euler implicit time integration option

was used in the present work, the temporal accuracy was

first order. The formal temporal and spatial accuracy of

the solver has been demonstrated previously on overlap-
ping grids via grid refinement studies. 13 Figure 5 illus-
trates the rate of spatial error reduction that was realized

in a grid refinement study using overlapping curvilinear
grids (2D).

Formal accuracy only indicates the rate at which the

difference equations converge to the governing differen-
tial equations as grid spacing is reduced. The absolute

accuracy of the solution to a practical application

depends on how well the evolving aerodynamic fields

have been resolved by the grids employed. Lacking
resources to carry out grid refinement studies to demon-

strate grid independence, it is not possible to make
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Figure 5. Average absolute error reduction with
increasing grid resolution for 2D overset grid case.

definitive statements as to the accuracy of the present
tiltrotor solution. Accordingly, qualitative assessments

of accuracy and comparison with available data to ver-

ify physical consistency will be done in this case.

The temporal resolution used in the present simula-

tion was excellent (>3,500 steps per rev). The spatial
resolution of the configuration's geometric surfaces is

also very good. However, due to the complexity of the
tiltrotor aerodynamic field, and limited computational

resources, the spatial resolution of the off-body field is

good, but not optimal.

Grid Topology

The approach for geometry decomposition and
domain discretization was to use a combination of back-

ground Cartesian grids and topologically simple body-

fitted grids. The background Cartesian grids are a simple

way to efficiently discretize the overall domain and

resolve the dominant flow features away from the rotor

and wing. The body-fitted grids resolve the geometric
detail of the configuration, and the viscous dominated

regions of the surrounding flowfield. In all, 26 compo-
nent grids were used, totalling more than 2.5 million

grid points.

The background Cartesian system of grids consists of
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Thebody-fittedgridcomponentshavebeenlimitedto
twosimpletopologies:"cap"and"O" grids."C" grids
andtopologiesthatrequirespecialaxislogicwere
avoidedbecause,in theauthor'sview,theyarenotwell
suitedtounsteadyflowproblems.Although"C" topol-
ogiesareverycommon,theyarepronetoinappropriate
usewithinanoversetgridapproach.Therearetwomain
reasonsfor this.First,theviscousspacingwhichis
requiredfor boundarylayerresolutionis propagated
alongtheC-slittothegridouterboundary.Therefore,
solutionsinterpolatedfromneighboringgrid systems
will likelybeobtainedfromagridof vastlydifferent
resolutioncapacity,possiblyresultingindecreasedsolu-
tionaccuracy.Second,a "C" topologyoftenassumes
wakelocationtobecoincidentwiththeC-slit,whichis
onlythecaseforsimpleidealproblems.Thewakeloca-
tionisoftenunsteady,andisusuallyinfluencedbyinter-
ferenceeffectsfrom otherbodycomponents.The
approachrecommendedhereis tochoosetopologically
simplebody-fittedgridsthathavesurfacegeometryres-
olutionastheirprimeobjective.Theroleof unsteady
flowdynamicsresolutionbelongstoadaptivegridtech-
niqueswhichcanbeimplementedviasolutionadaptive
oversetgridding.14

Topologiesthatrequireaxislogic are undesirable for

different reasons. Axis logic generally implies that the

solution along the axis is derived from an averaging pro-
cess involving a nearby off-axis solution. If grid cluster-

ing is sufficiently fine near the axis, such topologies can

be effective. However, it is usually impractical to pro-

vide the needed axis clustering, and the numerical sta-

bility constraints imposed by their use are often severe.

In an attempt to enhance resolution of off-body

dynamics of the blade-tip vortices, a very fine back-

ground grid system was generated using the topology of
a cylindrical annulus. Clearly, given a case involving an

isolated rotor in hover, one could usefully generate and

a-priori position such a grid since the gross rotor wake

behavior would be known. However, in the present case,

the wing interacts with the rotor wake and, therefore, it

is not clear that such a fine grid will actually improve

the resolution of the blade-tip vortices. The fine grid
shown in Figure 10 was used in the simulation. The

added grid points offer a real potential for more accu-

racy, with no risk of accuracy degradation.

The overset grid system employed for the present til-

trotor case has a total of 26 component grids, and more

than 2.5 million grid points in all. The domain connec-

tivity requirements of the problem vary from one time-

step to the next due to the motion of the rotor blades.

However, connectivity requirements for intergrid

Figure 10. Fine background grid to help resolve off-
body dynamics of blade-tip vortices.

boundary points (IGBPs) unaffected by blade motion

are not recomputed, interpolation information available
at time-level "n" is reused at time-level "'n+l". The

average domain connectivity requirements of all types

for the present case are 265,000 IGBPs/time-step. On a

CRAY Y/MP C-90, the domain connectivity require-

ments were satisfied at a rate of approximately 10,000

IGBPs per CPU second.

SIMULATION ANALYSIS

Flowfield Characteristics

The tiltrotor test case described previously was started

impulsively from quiescent flow conditions and run

time-accurately for 17 revolutions. Histograms of rotor

thrust and shaft-torque (power), and wing download are

shown in Figure 11. Perhaps the first point that should

be noted about the histograms is that they indicate that
the simulation has not been carried out far enough to

prove that a periodic state has been reached. Although

the mean rotor thrust and power values seem to have

settled down, their signatures are still changing as indi-

cated by slowly increasing amplitude and irregular high
frequency blips associated with each blade event. The

wing download mean value appears to be leveling out.

As a means of discussion of the simulation results,

consider the three major periods indicated below the

time axis in Figure 11: rotor start-up, fountain forma-

tion, and rotor/wing/fountain interaction. The start-up

period is characterized by interaction between a start-up

ring-vortex and the out-board blade-tip vortices (see
Figure 12a). The blade-tip vortices are well defined

structures, but are eventually entrained by the start-up

ring vortex, adding to the strength of its vorticity. Note

that for a right-handed wing and rotor, the sense of vor-
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a b) c)

Figure 12. Start-up. Particles are released from seed locations at specified time intervals and allowed to convect with

the unsteady flow field (images taken at t = 42.625). a) Front view: particles released along a line in the plane of the

rotor every 50 At. b) Side view (nacelle made invisible): particles released once per rev from a matrix of seed points
located just above the wing and flap upper surfaces, c) Side view: particles released once per rev from a square matrix

of seed points in the symmetry plane (particle motion restricted to symmetry plane). Note: particle path images were cre-
ated in a post-process using UFAT.15

symmetry plane and above the wing upper surface. Fig-

ure 12c illustrates the flow direction in the plane of sym-

metry. Particles have been released once per rev from a

square matrix of seed points in the plane of symmetry.
The rotor has been running for -5 revs. Particles were

released once per rev for the last 3 revs in Figures 12b
and 12c. At this stage of the flow, the effect of the rotor

is to entrain air between the symmetry plane and the

rotor disk, creating a downward flow toward the wing.

This downwash is in opposition to the radial flow away
from the wing near the plane of symmetry. The ultimate

strength and height of the tiltrotor fountain represents
the equilibrium state of the opposing forces of the rotor

downwash and wing/symmetry plane radial outflow.

As the rotor wake begins to establish itself, the rest of

the flow structures around the rotor and wing likewise
continue to evolve. Figure 13 illustrates the flow charac-

teristics after ~10 revs (t = 86.375). Comparison of Fig-
ure 13a with Figure 12a shows that the rotor wake has

increased in extent and intensity. The wake appears to

be entraining more air and the rotor wake shear-layer

has overpowered the tip-vortices. The tip vortices main-

tain their structure to a greater extent in reality. 16 How-
ever, in the simulation, the tip vortex intensities are

under predicted due to insufficient grid resolution.

a b) c)

Figure 13, Fountain formulation. Particles are released from seed locations at specified time intervals and allowed

to convect with the unsteady flow field (images taken at t = 86.375). a) Front view: particles released along a line in

the plane of the rotor every 50 At. b) Side view (nacelle made invisible): panicles released once per rev from a matrix

of seed points located just above the wing and flap upper surfaces, c) Side view: particles released once per rev from
a square matrix of seed points in the symmetry plane.
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The primary questions that remain after 17 revs of the

simulation concern the equilibrium state of the flow-

field. Has a periodic state been reached, or is there a low
frequency oscillation that still need:_ to settle out? The

significance of this question is two-fold. First, the peak

and mean wing surface pressures and integral loads

depend on the temporal state of the flowfield. These val-

ues are controlled by the period associated with the low-

est significant frequency of oscillation. Second, from a
practical standpoint, the existence of significant low fre-

quency oscillations directly controls the computational

expense of a numerical simulation (i.e., lower frequency

equals higher computational expense).

Comparison with Experimental Data

Comparisons between the present simulation and

experimental data have been carried out. The sampling
period used in the experiment to determine mean quanti-

ties was not specified in Reference 1. In the present

paper, mean quantities from the simulation are based on

l-rev simple averages.

Comparison between the computed and experimen-

tally measured mean rotor thrust and shaft torque coeffi-

cients are given in Table 3. The computed values of CT

and CQ are less than 4% and 1% of the respective values
measured in the experiment. Figure 15 shows the wing

and flap upper surfaces grey-scale shaded by mean Cp.

The portion of the wing and flap surfaces shaded by Cp
correspond to the wing and flap sections instrumented in

the experiment. Also, sectional location of pressure-tap

rows in the experiment are indicated by black lines in

the figure. Figure 16 compares computed and experi-

mental mean Cp distributions over the upper and lower
surfaces of the wing and flap.

Although the comparisons between experimental

mean Cp distributions and the l-rev averages from the
simulation are in general agreement, there are some dif-
ferences that should be noted. Near the nacelle, the

agreement between experiment and simulation is excel-

lent. However, the agreement at stations 0.85 and 1.05,
is less favorable. The area between these two stations is

where the tip-vortices impinge directly on the wing and
flap upper surfaces. The area of the wing for r/R greater

than 0.85 also corresponds to the region of flow that has

undergone large changes associated with the formation

of the fountain, and may still be in a state of flux.

The I-rev mean wing download (CDI) that results
from the simulation (17th rev) is 0.00137, which is 8%

higher than the value of 0.00127 reported in Reference

1. The computational and experimental values of CDI

were both obtained by integration of pressure over the

wing and flap surfaces.

The present agreement between computed and experi-
mental download for this case is somewhat remarkable.

Previous independent computational results for this case

have overpredicted the reported value of experimental
wing download by more than 33 percent. 17 The fidelity

of the present simulation with experimental data, rela-

tive to previous results, can be explained largely by the
fidelity of the present discretization with the actual test

article. The present simulation used approximately 10

times the number of grid-points (with essentially no

increase in memory requirements) and 25 times the

1.5

0.0 i

-3.5

symmelry I I

plane 1.05 0.85 0.65 0.45 0.25

r/R

nacelle

Figure 15. Computed Cp distribution on the wing and flap upper surfaces (1-rev averaged values of rev 17).
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enoughtoknowforsure,or toascertainwhetherother
lowfrequencyoscillatoryflowfeaturesexist.Finally,an
appropriatemodelof turbulencedoesnotexistforthis
flowfield.

Futureresearchin thecomputationalaspectsof this
problemwill bedirectedtowardthedevelopmentand
testingof solutionadaptiontechniquesforoversetgrid 7
systems.Thiswill facilitatehigherfidelitysolutions
while efficiently using availablecomputational
resources.Givenanoversetgridbasedsolutionadaptive
capability,theaerodynamicsoftiltrotoraircraftinhover 8
will bestudiedfurther,withemphasison issuesof
acousticsanddownloadprediction.
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